
In Proceedings of Supercomputing '92Dimensions of MeaningHinrich Sch�utzeCenter for the Study of Language and InformationVentura HallStanford, CA 94305-4115AbstractThe representation of documents and queries asvectors in a high-dimensional space is well-establishedin information retrieval [1]. This paper proposes torepresent the semantics of words and contexts in a textas vectors. The dimensions of the space are words andthe initial vectors are determined by the words occur-ring close to the entity to be represented which im-plies that the space has several thousand dimensions(words). This makes the vector representations (whichare dense) too cumbersome to use directly. There-fore, dimensionality reduction by means of a singularvalue decomposition is employed. The paper analyzesthe structure of the vector representations and appliesthem to word sense disambiguation and thesaurus in-duction.1 IntroductionIn this paper a new representational scheme is in-troduced that tries to provide a basis for determin-ing closeness in meaning. The approach is motivatedby work on vector representations in information re-trieval. In IR systems such as SMART and SIRE doc-uments and queries are represented as vectors in termspace [1]. The assumption is that two documents aresimilar to the extent that they contain the same words.An obvious extension of this methodology to the rep-resentation of contexts is to assign to each context theset of words that occur in close proximity, say in awindow of �fty words. However, the same content canbe expressed with very di�erent words, so that in thissimple scheme two contexts could have a similaritymeasure of 0 although they are very close in meaning.The problem is that the absence or presence of agiven word is very little information if we treat wordsas unanalyzed symbols or indices in term vectors. Thelexical representations used for comparing contextshave to be enriched. The approach adopted here is

to represent words as term vectors that re
ect theirpattern of usage in a large text corpus. Figure 1shows how this can be done. The terms cash andsport are the dimensions of the space in which simi-larity is to be measured. The columns of the matrixrepresent the words bank , interest , and �nals. Eachentry in the matrix is a cooccurrence count. For in-stance, acash;bank = 300 encodes the fact that thewords cash and bank cooccur 300 times in the (hy-pothetical) corpus. Cooccurrence can be de�ned withrespect to windows of a given size or on the basis ofsentence boundaries.With cosine of the angle between the vectors asa measure, we get the following correlations for thethree words in Figure 1: cos(bank; interest) = 0:94,cos(interest; �nals) = 0:92, cos(bank; �nals) = 0:74.These numbers can be interpreted geometrically asshown in Figure 2. Terms are axes, words are vec-tors whose components on the various dimensions aredetermined by the cooccurrence counts in the collo-cation matrix. Similarity between vectors has then astraightforward graphical equivalent: Proximity in themultidimensional space corresponding to the colloca-tion matrix. In Figure 2 bank and �nals are not veryclose to each other, but both are close to the vectorinterest between them.Now we are in a position to compute a represen-tation of context that is more reliable than the bag-of-words method criticized above: The normalized av-erage (or centroid) of the vectors of the words in acontext can be seen as an approximation of its seman-tic content. If at least some of the words in the contextare frequently used to describe what the current con-text is about then their vectors will pull the centroidbank interest �nalscash 300 210 133sport 75 140 200Figure 1: A collocation matrix.
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75133 200Figure 2: A vector model for context.toward the direction of that topic or content. It ispossible to defeat this scheme by describing a contentexclusively using words that normally express unre-lated thoughts. But such situations are expected tobe rare.Let us look at word sense disambiguation to seehow this representation of context can be put to work.Consider the example of the word interest . Let per-cent be the tag for uses of interest in the sense\charge on borrowed money" and concern the tagfor \a feeling that accompanies or causes special at-tention." Then the percent sense will occur more of-ten in contexts that score high on the cash dimension,and the concern sense will occur more often in con-texts that score high on the sport dimension. We canthen disambiguate an occurrence of interest at a givenposition in the text by computing the context vectorof that position and determining how close it is to thecash and sport dimensions of the space. Two suchcontext vectors are depicted in Figure 2. Vector con-text1 is closer to cash, so probably it is an occurrenceof the percent sense of interest . Vector context2 iscloser to sport , and it is most likely an occurrence ofthe concern sense.A space with only two dimensions, cash and sport ,would be a rather impoverished representation. Forbetter results, several thousand words should be con-sidered. It is here that supercomputing becomes cru-cial. The collocation matrices usually have few zerosin them because large windows are used and the cor-pus has a size of more than 50 million words. As a

result, almost every pair of words cooccurs. In prac-tise, this means that all but about 10% of the cellsare �lled. For example, a typical 4000-by-4000 matrixhad less than 10% zeros.Any systematic work in this framework needs touse more e�cient representations since vectors withseveral thousand components take up too much spaceand time in processing. Therefore, a dimensionalityreduction by means of a singular value decompositionis performed. The algorithms fromMike Berry's SVD-PACK were used in this paper, mainly the Lanczosalgorithm LAS2.As will be shown in section 4.3, the vector repre-sentations have the key properties of the distributedrepresentations characteristic of parallel distributedprocessing [2]. They will therefore be referred toas sublexical representations in analogy to termslike \subsymbolic" and \subconceptual" in connec-tionism.2 Word Sense DisambiguationWord sense disambiguation is important for manyareas of language processing. For instance, di�erentsenses of a word have di�erent translations in foreignlanguages and they have to be rendered di�erently ina text-to-speech system.The main problem in using sublexical representa-tions for disambiguation is to �nd the directions inthe space that correspond best to the various senses ofan ambiguous word. One could imagine many labor-intensive ways of identifying such directions: for in-stance �nding several dozen typical uses and com-puting their centroid. A less reliable, but automatic,method taken here is to cluster a training set of con-texts, to assign senses to the clusters and to assign newoccurrences the sense of the closest cluster. The clus-tering programs used are AutoClass [3] and Buckshot[4]. AutoClass is a Bayesian classi�cation programbased on the theory of �nite mixtures. It determinesthe number of clusters automatically by imposing apenalty on each new cluster and thus counterbalanc-ing the fact that more clusters will necessarily betteraccount for the data. Due to the computational com-plexity of high-quality classi�cation, buckshot, a moree�cient, linear algorithm, was used for some of thelarge data sets shown in Table 1. Buckshot clusters nitems by applying a quadratic high-quality clusteringalgorithm to a random sample of size pkn (for someconstant k) and extending this classi�cation in lineartime to the rest of the data set.



word training set test set # contexts per sense % correct#months #contexts #months #contexts clustering #classes %raresenses %majorsense 1 2 3 sum 1 2 3 sumcapital/s 3 2000 1 200 A 2 5 66 127 64 191 96 92 95interest/s 2 2955 1 501 A 3 15 68 291 165 456 94 92 93motion/s 18 3101 1 200 B 2 0 54 107 93 200 92 91 92plant/s 5 4132 1 502 A 13 14 66 283 188 471 94 88 92ruling 18 5966 1 200 B 2 4 60 115 78 193 90 91 90space 18 10126 1 200 B 10 0 59 118 82 200 89 90 90suit/s 18 8206 1 498 B 2 18 54 220 189 409 94 95 95tank/s 5 1780 1 336 A 8 16 80 226 56 282 97 85 95train/s 18 4775 1 266 B 10 2 76 200 62 262 94 69 89vessel/s 17 1701 2 144 B 7 10 58 76 23 22 130 93 91 86 92Table 1: Ten disambiguation experiments.word sense pos de�nitioncapital 1 N stock of goods2 N seat of governmentinterest 1 NV a feeling of special attention2 N a charge for borrowed moneymotion 1 N movement2 N a proposal for actionplant 1 N a factory2 NV living beingruling 1 NV an authoritative decision2 V to exert control, or in
uencespace 1 N area, volume2 N outer spacesuit 1 N an action or process in a court2 N a set of garmentstank 1 N a combat vehicle2 N a receptacle for liquidstrain 1 N a line of railroad cars2 V to teachvessel 1 N a ship or plane2 N a blood vessel3 N a hollow or concave utensilTable 2: De�nition of the senses in Table 1.

Table 1 summarizes the ten disambiguation exper-iments that have been conducted so far. The �rst col-umn contains the word that is to be disambiguated. Intwo cases, in
ected forms are excluded because theyare not ambiguous. (rulings only has the \decision"sense, spaces cannot mean \outer space.") For allwords, the training and test set were taken from theNew York Times News Service. The training sets con-sisted of months from the period May 1989 throughOctober 1990. The test set was in November 1990 ex-cept for vesselwhich was trained on June 1989 throughOctober 1990 and tested on May 1989 and Novem-ber 1990. Columns 3 and 5 show how often the am-biguous word occurred in test and training set. Thecolumn \clustering" has \A" for AutoClass and \B"for Buckshot. The next column gives the number ofclasses found by AutoClass or the number of classesrequested for Buckshot. Usually, classi�cations with2, 5, 7 and 10 classes were tried. The �rst successfultrial is reported in the table.Infrequent senses of the ambiguous words were ex-cluded here. The percentage in column 8 (\% raresenses") indicates how many occurrences are not ac-counted for. It also includes repetitions of identicalcontexts for tank , plant , interest , suit , and vessel . Forthese words repeated contexts only count once.The column \major sense" shows how dominant themajor sense of the word is. For instance, 80% of thefrequent uses of tank are \vehicle" uses, 20% \recep-tacle" uses.Contexts in the test set were disambiguated accord-ing to the sense of the closest cluster. For instance, if



word ten nearest neighborsabsolutely absurd whatsoever totally exactly nothing does understood truly matter anyonebottomed dip copper drops topped slide trimmed slightly squeeze 
at mixcaptivating shimmer stunningly superbly plucky witty melodrama fairy stoppers stylized taledoghouse dog porch crawling beside downstairs gazed alley sofa crawled upstairsMakeup repellent lotion glossy sunscreen Skin gel pokes hue mascara dyesmediating reconciliation negotiate cease conciliation peace EPLF talks immediate Nations OASkeeping hoping bring wiping could some would other here rest havelithographs drawings Picasso Dali sculptures Gauguin Monet paintings painters Degas artworkpathogens toxins bacteria organisms bacterial parasites humans microbial parasitic amino microbessenses grasp psyche truly clumsy naive innate awkward realm somehow instinctTable 3: Ten randomly selected words and their nearest neighbors in sublexical space.for a context of tank in the test text the closest clus-ter in the training set had been assigned the sense tagvehicle, then the context was disambiguated as be-longing to that sense. The last six columns of Table 1contain the absolute number of occurrences per senseand the percentage of correct disambiguation.Table 2 glosses the major senses of the ten words.The column \pos" shows the part of speech of theword. Some senses can be realized as verbs or nouns.In general, verbs are harder to disambiguate thannouns, but as the results for plant , interest , rulingand train show, success in the 90% range is possible.The senses that occurred in the New York Timesand were excluded are \tank top" and \think tank"for tank ; metaphorical senses such as \to plant a suc-tion cup Gar�eld" and \the physical plant of a school"for plant ; the \legal share" sense of interest ; the ad-jectival and sports senses of capital (\capital punish-ment", \Washington Capitals"); the verbal sense ofsuit (\to be proper for"), the card game sense and \tofollow suit"; \to rule out" for ruling ; and \an orderlysuccession" and \drive-train" for train. Many of thesesenses occur in �xed expressions and are easy to �lterout in preprocessing.It is important to note that senses were assignedto classes on the basis of the training set. In the caseof autoclass, only classes that had at most two errorsamong the �rst 10 members in the training corpuswere assigned. In the case of buckshot, the majorityof the �rst 10 or 20 members in the training corpusdetermined sense assignment. It is always possible tocluster the occurrences in the test set so �nely thateach cluster is homogeneous. In the extreme case, aclassi�cation with as many classes as items in the testset is guaranteed to be 100% correct. But since classeswere assigned using the training set here, even a highnumber of classes seems unproblematic.

3 Word SpaceWhen applied to word sense disambiguation, theinformation in sublexical space is reduced to a binaryopposition: Is a particular context an instance of sense1 or sense 2? But there is much more information inthe sublexical representations of words: They can alsobe viewed as constituting a thesaurus by interpretingproximity in the space as a measure of semantic relat-edness. Table 3 shows 10 out of 20 randomly selectedwords and their ten nearest neighbors. (The set of 20words also contained proper names like \Chun" andtrademarks like \Cheerios.") The neighbors are listedin the order of proximity to the head word.The sample turns out to be representative: In gen-eral, the nearest neighbors of about 50% of the wordsin the space are as intuitive as the ones shown forMakeup or lithographs, but there is also a signi�cantnumber of words like keeping that are not character-ized well by their spatial neighborhood. The charac-terization is the better, the more clearly the set oftypical topics of the word in question is delineatedby other topics. Makeup, mediating , lithographs, andpathogens are all in topic areas with clear boundaries.Therefore, their nearest neighbors are other terms ap-propriate for describing this topic area. (EPLF standsfor \Eritrean People's Liberation Front.") absolutely ,bottomed , captivating , and senses have less clearlydelineated topics. Therefore, their nearest neighborsets contain some counterintuitive words. (bottomedis mainly used in �nancial contexts in the New YorkTimes: \The market bottomed on April 27.") keepingcan be used for almost any topic. For this reason, itsnearest neighbors seem rather random. Finally, dog-house shows the limitations of the way the word spacewas computed. The key article in which the otherwiseinfrequent word doghouse occurs is a report on an ex-hibition of designer doghouses in New York: \New
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Figure 3: The semantic �eld of supercomputing in sublexical space.York museum lands architects in `The Doghouse' "(June 6, 1990). It contains many architectural termsand that is probably the reason that porch, down-stairs, and alley ended up close to doghouse. Here,one article which was not very representative for thegeneral usage of the word dominated the computationof its vector. This problem is likely to disappear if alarger corpus is used.The word space and a classical thesaurus such asRoget's di�er in that Roget's concentrates on syn-onyms or near synonyms whereas the nearest neigh-bors in sublexical space include mostly collocates,terms frequently used with the word in question. Toillustrate, Roget's gives words like dilemma, nut tocrack , and Gordian knot for problem. The mostprominent neighbors in word space are solve, recur-ring , panacea, beset , grips. These are words that areimportant for using problem or for expressing a con-tent similar to those that problem is used for, but theyare not synonyms.Table 3 is good for evaluating how well proxim-ity in meaning and proximity in the space correlate,but it doesn't show the �ne structure of the space ata particular location. The word supercomputing waschosen for a closer examination of a small region ofthe space. Figure 3 shows principal components 2 and3 of the matrix of correlation coe�cients of the 200nearest neighbors of supercomputing .1 The center of1The vectors are all very similar since they are from the sameneighborhood. Principal component 1 captures that similarity,but no interesting variation in the data.

each word is plotted at the position determined byits projections on the second and third major axis ofvariation as computed by a principal component anal-ysis. If several words have the same position, only oneis shown. Some words were moved up to 4 points tomake the �gure more legible.As can be seen from the �gure, the representationsare highly corpus-dependent. For instance, if the col-location matrix had been based on these proceedings,minicomputers would not be part of the semantic �eldof supercomputing . But in the New York Times, thetopic of supercomputing is not clearly distinct fromgeneral computer science and the manufacturing ofcomputing machinery. For many applications, it isan asset rather than a liability that the representa-tions are corpus-dependent. Consider the exampleof information retrieval. If the New York Times isthe document collection, it is likely to be used for �-nancial queries. In such a context, �ne distinctionsbetween di�erent branches of the computer industrydon't seem necessary. On the other hand, a sublexi-cal space based on a collection of articles devoted toresearch and development in computer science wouldhave a much richer structure at the location of super-computing and no articles on microcomputers wouldbe retrieved by a query on supercomputing. Since lit-tle manual labor is involved in inducing the space, arepresentation that is �nely tuned to the documentcollection in question could be a promising basis formany applications in information processing.



4 Analyzing Sublexical SpaceHow can the disambiguation results in Table 1 beimproved? There are many parameters that had tobe �xed rather arbitrarily and they may have gottensuboptimal settings. This section investigates three ofthem: the size of the window; the weighting of thedimensions of the space; and the selection of di�erentsets of dimensions.4.1 Window SizeIn Table 1, window sizes of 1000 or 1200 charac-ters were used for computing the context vector. Itmakes more sense to limit the window by the numberof characters than by the number of words becausefew long words are as good as (or even better) thanmany short words which tend to be high-frequencyfunction words. How does window size in
uence dis-ambiguation performance? To answer this questionone could cluster context sets that are computed withvarying window sizes. However, there's some variabil-ity in the results of clustering and the best windowsize may yield mediocre disambiguation results by ac-cident. An average over several clusterings could betaken, but that would be time-consuming. A deter-ministic, less expensive method is therefore needed.Canonical Discriminant Analysis (CDA) or lineardiscrimination is such a method [5]. It �nds the bestweighting or linear combination of the dimensions ofthe space so that the ratio of the sum of between-groupdistances to the sum of the within-group distances ismaximized. This task is slightly di�erent from clas-si�cation. It could be that, say, forty dimensions aresu�cient for clustering, but that more are needed totease the two words apart on a linear scale as CDAdoes. Conversely, even though giving large weightsto few dimensions with very low values in the origi-nal space can result in a nice separation, a clusteringprocedure may not be able to take advantage of thissituation because the distance measure is the cosineand it concentrates on dimensions with high values.So the results below have to be interpreted with somecaution.Linear discrimination is a supervised learningmethod: the items in the training set have to be la-belled. Since labelling thousands of instances of anambiguous word is not feasible, a simple trick wasemployed here. Instead of discriminating an am-biguous word for which the sense tags in the cor-pus are unknown, three arti�cially ambiguous wordswere created: author/baby , giants/politicians, andtrain/tennis. These pairs were selected because the

# contexts inpair word training set test setJun90{Oct90 Nov90pair 1 author 1552 312baby 1544 349pair 2 train 1089 219tennis 1072 136pair 3 giants 1544 707politicians 1530 364Table 4: Frequency of the words used in CDA.words in each pair are comparable in frequency in thecorpus and they are as distinct semantically as the dif-ferent senses of ambiguous words like suit or capital .All six words are nouns because the meaning of verbsoften depends on their arguments rather than on thegeneral context. However, about twenty percent of theoccurrences of train are verbs (see above). Table 4 liststhe frequencies of the CDA words in training and testset.Figure 4 shows how generalization to the test setdepends on the number of dimensions and the win-dow size. The solid line is 1200 characters, the densedotted line 1000 characters and the sparse dotted line800 characters. Each point in the graph was com-puted as follows: For a given window size, a linear dis-crimination analysis was performed for the 3096 datapoints in the training set using the �rst n dimensions,where the value of n is indicated on the horizontalaxis. The computed weighting was used to projectthe 3096 points onto one dimension. The optimal cut-ting point was determined. The projection and thecutting point were then applied to the test set. Thegraph shows how many contexts in the test set werediscriminated correctly (in percent).Apparently, 1000 characters is the ideal windowsize for discriminating author/baby . The resultsfor train/tennis were similar in that 1000 charac-ters seemed the optimal size most of the time al-though 800 and 1200 characters produced generaliza-tions very close in quality for many dimensions. Forgiants/politicians, the graphs for the three windowsizes were almost identical for most dimensions. Thissuggests that 1000 characters is a good window sizefor computing the context vector.Figure 4 also suggests that using more than 97 di-mensions could improve the disambiguation results.Unfortunately, only 97 dimensions were extractedwhen computing the singular value decomposition, soit could not be tested whether the curve keeps rising or
attens out fast beyond dimension 96. The discrimi-
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Figure 4: Discrimination of author/baby for di�erent window sizes and dimension sets.

Figure 5: Optimal dimension weights for discriminating author/baby and train/tennis.



nation graph for giants/politicians has a very clear ris-ing tendency, so an improvement in perfomance withmore dimensions seems likely.4.2 Dimension WeightsThe second question is whether all dimensions areimportant for some distinctions or whether there aresome that are never relevant. A preliminary answercan be found in Figure 5. It shows the optimal weightsas computed by the CDA algorithm if all 97 dimen-sions are used. Dimensions 0, 10, 20, 30, 40, 50, 60,70, 80, and 90 are marked on the horizontal axis inboth �gures. The height of each rectangle shows therelative weight of the corresponding dimension. Theweightings were very stable when new dimensions wereadded, with each incoming dimension dampening theweights of the others without changing the \gestalt"of the weight graph.Di�erent weightings seem to be necessary for dif-ferent word pairs. For instance, dimension 10 (thesecond marked dimension from the left) has weightzero for author/baby , but a high positive weight fortrain/tennis. Dimensions 70 and 80 (the second andthird marked dimensions from the right) have weightswith the same signs for author/baby and weights withdi�erent signs for train/tennis. So whereas high pos-itive values on both 70 and 80 will strongly favor onesense over the other in discriminating author/baby ,they cancel each other out for train/tennis. The opti-mal weights for giants/politicians display yet anotherpattern. This evidence indicates that di�erent dimen-sions are important for di�erent semantic distinctionsand that all are potentially useful.4.3 Distributed RepresentationThree experiments were conducted to �nd outwhether some groups of dimensions were more impor-tant than others. In general, a singular value decom-position yields a space in which the leading dimensionis most important, the second dimension is the sec-ond most important etc. But this doesn't seem tobe the case here as the disambiguation results in Ta-ble 5 show. Data set 1 (contexts of suit) in Table 5was �rst classi�ed using only dimensions 1 through 30.The error rate on the test set was 6%. Then a clas-si�cation with the last 38 dimensions was computed,again yielding an error rate of 6%. Finally, all 97 di-mensions except for the very �rst one were classi�ed.Here, the error rate was 5%. This suggests that thevector representations are highly redundant and that

dimensions used error ratedata set 1 1{30 6%59{96 6%1{96 5%data set 2 1,2,3,: : :,29,30 9%1,3,5,: : :,27,29 14%2,4,6,: : :,28,30 13%Table 5: Sublexical representations are distributed.the singular value decomposition computed here is dif-ferent from other SVD applications in that the �rstone hundred dimensions are all equally meaningful forthe disambiguation task. This hypothesis is con�rmedby the classi�cation of the second data set in Table 5(also contexts of suit). Using all 30 dimensions, theerror rate is 9%. Deleting either all even dimensions orall odd dimensions increases the error rate, but there'sstill enough information to �nd a classi�cation of mod-erate quality.It is also instructive to repeat the linear discrim-ination experiments for sets of �nal dimensions (asopposed to sets of initial dimensions as in Figure 4).There is evidence that the leading dimensions may ac-tually have less relevant information in them than theimmediately following ones. It was found that dis-ambiguation on the basis of dimensions 51{96 attainsalmost optimal performance and adding dimensions0{50 only leads to minor improvements. Only 30 �naldimensions (67{96) are necessary for 80% correctnesswhereas almost 50 dimensions (0-48) are needed forthe same level of performance in Figure 4. The curvefor �nal dimensions also is initially much steeper thanits counterpart in Figure 4. Further research is neces-sary to �nd out whether dimensions 100-200 are evenbetter than 50{100.5 DiscussionThe approach to semantic representation proposedhere bears some similarity to Latent Semantic Index-ing (LSI) in information retrieval in that a singularvalue decomposition is used [6]. However, there isan important di�erence: In LSI, the main purposeof the space reduction is to improve the quality ofthe representations, thereby achieving better perfor-mance. The initial term-by-document matrix is noisybecause it contains many small counts which are in-herently unreliable. Using SVD as a smoothing tech-nique removes this noise. However, the term-by-termmatrices described in this paper are dense and mostly



contain high counts, due to the size of the corpus. Asmentioned above, the matrices typically contain lessthan 10% zeros, and more than 50% of the elementsare greater than 100. So no smoothing is necessary todeal with the \bumpiness" of small counts.The detection of term dependencies is another mo-tivation for using SVD in LSI. Two documents mayhave a low similarity score in the original term spacebecause they use di�erent terms to express the sameconcept. For instance, document d1 may use coast ,where document d2 uses shoreline. The truncatedvectors of d1 and d2 computed by the singular valuedecomposition will be more similar than the originalterm vectors since coast and shoreline occur togetherin many documents. Loosely speaking, the singu-lar value decomposition will assign them to the sameprinicipal component. As a result, recall and precisionimprove when the truncated vectors from the SVD areused instead of the full term vectors. Again, the appli-cation of SVD presented here is di�erent: The originalvectors of coast and shoreline in the collocation ma-trix are already very similar since coast and shorelinecoccur with the same words.In order to test the prediction that noise and thedetection of term dependencies do not play an im-portant role in this application, one disambiguationexperiment was repeated with the unreduced vectors.The columns of about one thousand words in the col-location matrix that cooccur with interest were nor-malized after the counts had been dampened by appli-cation of square root. 2954 context vectors of interestin June and July 1990 were computed by summing upthe vectors of all words in a 51-word window aroundthe occurrence of interest . This set of 2954 contextvectors was then clustered into two classes using buck-shot, and applied to the context vectors of the �rst501 occurrences of interest in November 1990. Senseprediction was correct for 93% of the concern con-texts and 93% of the percent contexts. This result isalmost identical to the one with truncated vectors de-scribed above (94% for concern, 92% for percent).This indicates that, in contrast to LSI, the applicationof SVD does not in
uence performance in the case ofsublexical representations.On the other hand, the compact representationwithout loss of information that is made possible bythe singular value decomposition is less important inLSI since document vectors in information retrievalare sparse and can be e�ciently stored and processedin unreduced form. However, this compactness prop-erty of a principal component analysis is crucial forthis paper. If 20,000words were to be represented with

5000-component vectors each, a 100-megaword mem-ory would be required, and any application program,for instance for word sense disambiguation, would beprohibitively slow. Sublexical representation thereforedepends on high performance computing for any ap-plication that aims to be e�cient enough for real worlduse.Although the technical motivation for the dimen-sionality reduction is di�erent, sublexical representa-tion is very close to LSI as far as the interpretationof the dimensions of the reduced space is concerned.There is a long tradition in the social sciences of usingprincipal component analyses to understand variationin large data sets. For instance, a survey of \The El-derly at Home" with 20 variables is subjected to aprincipal component analysis in [7]. The �rst elevenprincipal components are then interpreted as corre-sponding to elderly people living alone vs. those thatshare accommodations with others etc. The approachtaken here follows LSI in that there is no interest in in-terpreting the dimensions, gaining additional insightsas to the structure of the data, or rotating the space inorder to position the axes in an intuitive way. All di-rections in the space are treated equally. The only im-portant information is the measure of similarity thatcan be obtained for any two words or contexts by com-puting their correlation coe�cient.The disambiguation results achieved here comparefavorably with those reported for other approaches.For instance, the methods in [8, 9] perform slightlybetter than the average of 92% in Table 1. However,they rely on thesauri and bilingual corpora. For manytechnical domains and foreign languages, thesauri orbilingual corpora are not available. Word sense dis-ambiguation on the basis of sublexical representationonly needs raw text as input, so there is virtually nolimitation to its application.Representations that are derived by means of a di-mensionality reduction di�er from other statistical ap-proaches in that a small number of parameters (on theorder of a few thousand) is estimated. Trigram-basedmodels such as the one presented in [10] have to es-timate millions or even billions of parameters. Eventhe largest corpus is not su�cient to estimate such alarge number of parameters reliably. In contrast, acouple of hundred principal components can be easilyjusti�ed with a corpus of 10 million words, resultingin robust estimates of statistical parameters.The approach to word sense disambiguation pro-posed here is also di�erent from knowledge-intensivemethods. In classical AI, word sense disambiguationis based on knowledge representation and logical infer-



ence. The challenge is to encode all items of knowledgethat may be relevant for tasks like disambiguation andto integrate them into a system that will respond ap-propriately. This goal has not been achieved yet andsystems like Cyc [11] still seem far from coming closeto it. The application of principal component analy-ses in this paper can be seen as a tool for integratinga large number of constraints, each word imposing aconstraint as to which sense is more likely in its neigh-borhood.6 ConclusionThe basic idea of this paper is to take the notionof semantic similarity seriously. In order for the \di-mensions of meaning" and the vector representationsof words to re
ect closeness in meaning faithfully, aglobal optimization of cooccurrence constraints is nec-essary, an operation so complex that only a supercom-puter can perform it. Semantic similarity underliesmany processes in linguistics (for instance metonymy:the replacement of the name of one thing by a closelyrelated one) and psychology (for instance priming: af-ter the presentation of a concept to a subject, reactiontimes are short for semantically related terms and longfor unrelated ones). A host of recent papers on mutualinformation (for instance [12]) is witness to its impor-tance in computational linguistics and lexicography.Still, even if semantic similarity is important, amore intricate set of lexical relations is needed for moreambitious natural language processing and linguistics,relations such as hyponymy or antonomy. These re-lations cannot be read o� sublexical space as easilyas semantic relatedness, but the space could be thebasis of representation for semantic theories dealingwith them. Representations and processes tend togo hand in hand; the way knowledge is representedlargely �xes appropriate processes and vice versa. Thenovel approach to semantic representation presentedhere, an approach made possible by the availability ofsupercomputers to linguistic research, may thus leadto theories of semantics that look very di�erent fromtoday's.AcknowledgementsI'm indebted to Ken Church, Patrick Hanks, JohnMaxwell, and John Tukey for comments, and to Mar-tin Kay and Jan Pedersen for discussions and help.I'm grateful to Mike Berry for SVDPACK; to NASAfor AutoClass; to SDSC for computing time; and toXerox PARC for corpora and corpus tools.
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