
No Word is an Island — a Transformation Weighting Model
for Semantic Composition

Corina Dima and Daniël de Kok and Neele Witte and Erhard Hinrichs
SFB 833 and Seminar für Sprachwissenschaft, University of Tübingen

Wilhelmstr. 19, 72074, Tübingen, Germany
{corina.dima, daniel.de-kok, neele.witte, erhard.hinrichs}@uni-tuebingen.de

Abstract

Composition models of distributional se-
mantics are used to construct phrase repre-
sentations from the representations of their
words. Composition models are typically
situated on two ends of a spectrum. They
either have a small number of parame-
ters but compose all phrases in the same
way, or they perform word-specific compo-
sitions at the cost of a far larger number
of parameters. In this paper we propose
transformation weighting (TransWeight), a
composition model that consistently out-
performs existing models on nominal com-
pounds, adjective-noun phrases and adverb-
adjective phrases in English, German and
Dutch. TransWeight drastically reduces the
number of parameters needed compared to
the best model in the literature by compos-
ing similar words in the same way.

1 Introduction

The phrases black car and purple car are very sim-
ilar — except for their frequency. In a large cor-
pus, described in more detail in Section 4.1, the
phrase black car occurs 131 times — making it
possible to model the whole phrase distribution-
ally. But purple car is far less frequent, with only
5 occurrences, and therefore out of reach for dis-
tributional models based on co-occurrence counts.

Distributional word representations derived
from large, unannotated corpora (Collobert et al.,
2011; Mikolov et al., 2013; Pennington et al.,
2014) capture information about individual words
like purple and car and are able to express, in vec-
tor space, different types of word similarity (e.g.
the similarity between color adjectives like black
and purple, between car and truck, etc.).

Creating phrasal representations, and in partic-
ular representing low-frequency phrases like pur-
ple car is a task for composition models of dis-
tributional semantics. A composition model is a

function f that combines the vectors of individual
words, e.g. u for black and v for car into a phrase
representation p. p is the result of applying the
composition function f to the word vectors u,v:
p = f(u,v).

Our goal is to find the function f that learns how
to compose phrase representations by training on
a set of phrases. The target representation of the
whole phrase, p̃, is learned directly from the cor-
pus, if needed by concatenating first the word pairs
of interest, e.g. black_car. The function f seeks
to maximize the cosine similarity of the composed
representation p and the target representation p̃,
argmax p·p̃

‖p‖2‖p̃‖2 .

The contributions of this paper are as follows:

• We provide an extensive review and evalu-
ation of existing composition models. The
evaluation is carried out in parallel on
three syntactic constructions using English,
German, and Dutch treebanks: adjective-
noun phrases (black car, schwarz Auto,
zwart auto), nominal compounds (apple
tree, Apfelbaum, appelboom), and adverb-
adjective phrases (very large, sehr groß, zeer
groot). These constructions serve as case
studies in analyzing the generalization poten-
tial of composition models.

The evaluation of existing approaches shows
that state-of-the-art composition models lie
at opposite ends of the spectrum. On one
end, they use the same matrix transforma-
tion (Socher et al., 2010) for all words, lead-
ing to a very general composition. On the
other end, there are composition models that
use individual vectors (Dima, 2015) or matri-
ces (Socher et al., 2012) for each dictionary
word, leading to word-specific compositions
with a multitude of parameters. Although
the latter perform better, they require training
data for each word. These lexicalized compo-

sition models suffer from the curse of dimen-
sionality (Bengio et al., 2003): the individual
word transformations are learned exclusively
from examples containing those words, and
do not benefit from the information provided
by training examples involving different, but
semantically related words. In the example
above, the vectors/matrices for black and pur-
ple would be trained independently, despite
the similarity of the words and their corre-
sponding vector representations.

• We propose transformation weighting — a
new composition model where ‘no word is an
island’ (Donne, 1624). The model draws on
the similarity of the word vectors to induce
similar transformations. Its formulation, pre-
sented in Section 3, makes it possible to tai-
lor the composition function even for exam-
ples that were not seen during training: e.g.
even if purple car is infrequent, the compo-
sition can still produce a suitable representa-
tion based on other phrases containing color
adjectives that occur in training.

• We correct an error in the rank evalua-
tion methodology proposed by Baroni and
Zamparelli (2010) and subsequently used as
an evaluation standard in other publications
(Dinu et al., 2013; Dima, 2015). The cor-
rected methodology, described in Section 4.4,
uses the original phrase representations as
a reference point instead of the composed
representations. It makes a fair comparison
between the results of different composition
models possible.

• We provide reference TensorFlow (Abadi
et al., 2015) implementations of all the
composition models investigated in this
paper1 and composition datasets for En-
glish and German compounds, adjective-
noun and adverb-adjective phrases and for
Dutch adjective-noun and adverb-adjective
phrases2.

2 Previous work in composition models

Word representations are widely used in modern-
day natural language processing. They improve

1https://github.com/sfb833-a3/commix,
last accessed May 16, 2019.

2http://hdl.handle.net/11022/
0000-0007-D3BF-4, last accessed May 16, 2019.

the lexical coverage of NLP systems by extrapo-
lating information about words seen in training to
semantically similar words that were not part of
the training data. Another advantage is that word
representations can be trained on large, unan-
notated corpora using unsupervised techniques
based on word co-occurrences. However, the
same modeling paradigm cannot be readily used
to model phrases. Due to the productivity of
phrase construction, only a small fraction of all
grammatically-correct phrases will actually occur
in corpora.

Composition models attempt to solve this prob-
lem through a bottom-up approach, where a phrase
representation is constructed from its parts. Com-
position models have succeeded in building rep-
resentations for English adjective-noun phrases
like red car (Baroni and Zamparelli, 2010), nom-
inal compounds in English — telephone num-
ber (Mitchell and Lapata, 2010) and German —
Apfelbaum ‘apple tree’ (Dima, 2015), determiner
phrases like no memory (Dinu et al., 2013) and
for modeling derivational morphology in English,
e.g. re-+build→rebuild (Lazaridou et al., 2013)
and German, e.g. taub ‘deaf’+-heit → Taubheit
‘deafness’ (Padó et al., 2016).

Name Composition function f
Addition (Mitchell and Lapata, 2010) u+ v
SAddition (Mitchell and Lapata, 2010)αu+ βv
VAddition a� u+ b� v
Matrix (Socher et al., 2010) g(W[u;v] + b)
FullLex (Socher et al., 2012) g(W[Avu;Auv] + b)
BiLinear (Socher et al., 2013a,b) g(uᵀEv +W[u;v] + b)
WMask (Dima, 2015) g(W[u� um;v � vh] + b)

Table 1: Composition functions from the litera-
ture. u and v are the word representations of the
inputs. The results reported in Section 5 use the
identity function g(x) = x instead of a nonlinear-
ity because no improvements were observed for
these models using g = tanh or g = ReLU.

In this section, we discuss several composition
models from the literature, summarized in Table 1.
They range from simple additive models to multi-
layered word-specific models. In our descriptions,
the inputs to the composition functions are two
vectors, u,v ∈ Rn, where n is the dimensionality
of the word representation. u and v are the rep-
resentations of the first and second element of the
phrase and are fixed during the training process.
In this work, the composed representation has the
same dimensionality as the inputs, p ∈ Rn. This

https://github.com/sfb833-a3/commix
http://hdl.handle.net/11022/0000-0007-D3BF-4
http://hdl.handle.net/11022/0000-0007-D3BF-4

allows us to train the composition functions such
that the composed representations are in the same
vector space as the word representations.

Additive Some of the earliest proposed models
were additive models of the form u+ v (Mitchell
and Lapata, 2010). The intuition behind the addi-
tive models is that p lies between u and v. The
downside of this simple approach is that it is not
sensitive to word order: it would produce the same
representation for car factory and factory car.
This suggests that u and v should be weighted
differently, for example using scaling – αu + βv
(Mitchell and Lapata, 2010) – or component-wise
scaling – a� u+ b� v.

Matrix The Matrix model proposed by Socher
et al. (2010) performs an affine transformation of
the concatenated input vectors, [u;v] ∈ R2n, us-
ing a matrix W ∈ Rn×2n and bias b ∈ Rn.

While the Matrix model is more powerful than
the additive models, it transforms all possible u,v
pairs in the same manner. This ‘one size fits all’
approach is counterintuitive: one would expect,
for example, that color adjectives modify nouns in
a different way than adjectives describing a phys-
ical quality (black car versus fast car). A single
transformation is bound to model a general com-
position that works reasonably well for most train-
ing examples, but cannot capture more specific
word interactions.

FullLex The FullLex model3 proposed by
Socher et al. (2012) is a combination of the Ma-
trix model with Baroni and Zamparelli (2010)’s
adjective-specific linear map model. FullLex cap-
tures word-specific interactions using a trainable
tensor A ∈ R|V |×n×n, where |V | is the vocabu-
lary size. u and v are transformed crosswise us-
ing the transformation matrices Au,Av ∈ Rn×n.
The transformed representations Avu and Auv
are then the input of the Matrix model. Every ma-
trix Aw in the FullLex model is initialized using
the identity matrix I with some small perturba-
tions. Since Iu = u, the FullLex model starts as
an approximation of the Matrix model. The ma-
trices of the words that occur in the training data
are updated during parameter estimation to better
predict phrase representations.

3The name Socher et al. (2012) propose for their model is
MV-RNN. However, we found Dinu et al. (2013)’s renaming
proposal, FullLex, to be more descriptive.

The FullLex model suffers from two deficien-
cies, caused by treating each word as an island: (1)
The FullLex model only learns specialized matri-
ces for words that were seen in the training data.
Words not in the training data are transformed us-
ing the identity matrix, thereby effectively reduc-
ing the FullLex model to the Matrix model for un-
known words. (2) Since the model stores word-
specific matrices, the FullLex model has an exces-
sively large number of parameters, even for mod-
est vocabularies. For example, in our experiments
with English adjective-noun phrases the FullLex
model used ∼740M parameters for a vocabulary
of 18,481 words. The large number of parameters
makes the model sensitive to overfitting.

The size of the FullLex model can be reduced
by using low-rank matrix approximations for Aw

(Socher et al., 2012). However, this variation only
addresses the model size problem, it does not im-
prove the handling of unknown words.

BiLinear The BiLinear model was proposed by
Socher et al. (2013a,b) as an alternative to the Full-
Lex model. This model allows for stronger in-
teractions between word representations than the
Matrix model. At the same time, BiLinear has
fewer parameters when compared to FullLex, be-
cause it avoids per-word matrices. Socher et al.
(2013a,b)’s goal is to build a model that is bet-
ter able to generalize over different inputs. The
core of the bilinear composition model is a tensor
E ∈ Rn×d×n that stores d bilinear forms. Each of
the bilinear forms is multiplied by u and v (uᵀEv)
to form a composed vector of dimensionality d.
Since the size of the phrase representation is n, in
this paper we assume d = n. Each bilinear form
can be seen as capturing a different interaction be-
tween u and v. The model then adds the vector
representation computed using the bilinear forms
to the output of a Matrix model.

The BiLinear model solves both problems of
the FullLex model. It does not apply a fallback
transformation for every unseen word, while at
the same time drastically reducing the number of
parameters. Unfortunately, in our composition
experiments the BiLinear model fares generally
worse than the FullLex model. Consequently, a
strong argument can be made in favor of a model
that learns information about specific words or
groups of words.

WMask Another alternative that trains word-
specific transformations but uses fewer parame-
ters than FullLex is the WMask model proposed
by Dima (2015). The reduction in the number of
parameters is achieved by training, for each word,
only two mask vectors, um, uh ∈ Rn, instead of
an n× n matrix. The mask vectors are positional:
if u is the vector for leaf, the first mask um is used
to represent leaf in phrases where leaf is the first
word, i.e. leaf blower, while in autumn leaf, where
leaf is the second word, the second mask, uh, is
used. The trainable parameters are stored in two
matrices Wm, Wh ∈ R|V |×n, where |V | is the
size of the vocabulary.

The mask vectors um and uh are initialized us-
ing vectors of ones, 1 and allow the initial word
representations to be fine-tuned for each individ-
ual composition. For words not in the training
data WMask is reduced, like FullLex, to the Ma-
trix model. In contrast to the FullLex model,
which uses crosswise transformations of the input
vectors, Avu and Auv, Dima (2015) uses direct
transformations: u, the vector of the first word, is
transformed via element-wise multiplication with
it’s first position mask, um, u�um. The vector of
the second word, v, is similarly transformed, this
time using the second position mask, v� vh. The
transformed vectors are then composed using the
Matrix model. We have experimented with both
direct and crosswise application of masks. The di-
rect application of masks, as proposed by Dima
(2015), provided consistently better results than
the crosswise application.

Although WMask uses fewer parameters, it still
has a linear dependence to the number of words
in the vocabulary, |V |. As in FullLex’s case, the
masks only improve the composition of words
seen during training and provide no benefit for
similar words that were not in training.

Non-linearities Most of the models described in
this section can be used with a non-linear acti-
vation function such as the hyperbolic tangent or
ReLU (Hahnloser et al., 2000).

We have experimented with these non-
linearities: models performed far worse with
g = ReLU, and there was no tangible improve-
ment in model performance using g = tanh.

We conjecture that a non-linearity is unneces-
sary because in our experiments the source and the
target representations come from a vector space
that was trained to capture linear substructures

(Mikolov et al., 2013). The ReLU has the addi-
tional disadvantage that it cannot produce nega-
tive vector components in the target representa-
tion. The results reported in Section 5 use the iden-
tity function, g(x) = x, for all the composition
models in Table 1.

Summary of the state of the art Even though
the BiLinear and WMask models attempt to ad-
dress the shortcomings of the FullLex model, we
will show in Section 5 that FullLex is the best per-
former among the models summarized in this sec-
tion. However, two crucial shortcomings of the
FullLex still need to be addressed: (1) The FullLex
model only learns specialized matrices for words
that were seen in the training data; (2) the FullLex
model has an excessively large number of param-
eters. In the next section, we will propose a new
composition model that effectively addresses both
shortcomings and outperforms the FullLex model.

3 The transformation weighting model

The premise of our model is that words with sim-
ilar meanings compose with other words in a sim-
ilar fashion. In theoretical linguistics, this in-
sight has been captured by the notion of selec-
tional restrictions. E.g. color adjectives, such as
black, green and purple combine with concrete
objects, such as apple, bike, and car. A FullLex
model composes black, green, and purple with the
nominal head car with three different composition
functions, treating each word as an island:

pblack_car = W[Acaru;Ablackv] + b (1)

pgreen_car = W[Acaru;Agreenv] + b

ppurple_car = W[Acaru;Apurplev] + b

Because each adjective is transformed via a
separate matrix – Ablack,Agreen and Apurple in
Eq. 1 – such a model fails to account for the sim-
ilarity of the lexical meaning of color adjectives.
The same lack of generalization holds for the lex-
ical meaning of concrete objects since their com-
position matrices are also completely independent
of each other. A more appropriate model should
be able to generalize over the lexical meanings of
the words that enter phrasal composition.

Our proposed model, transformation weighting,
addresses this issue by performing phrasal compo-
sition in two stages — a transformation stage and
a weighting stage. In the transformation stage the
model diversifies its treatment of the inputs by ap-

plying multiple different transformation matrices
to the same input vectors. Because the number of
transformations is much smaller than the number
of words in the vocabulary, the model is encour-
aged to reuse transformations for similar inputs.
The result of the transformation step is H ∈ Rt×n,
a set of t n-dimensional combined representations.
Each row of H, Hi, is a combination the input
vectors u and v parametrized by the i-th transfor-
mation matrix.

In the second stage of the composition process
H1,H2, ...,Ht are combined into a final com-
posed representation p. We have experimented
with several variants for combining the t transfor-
mations into a single vector.

3.1 Applying transformations
Our proposal takes a middle ground between ap-
plying the same transformation to each u,v —
as in the Matrix case, and applying word-specific
transformations from a set of |V | transformations
— as in the FullLex case. t, the number of trans-
formations, is a hyperparameter of the model. Set-
ting t = 100 transformations was empirically
found to provide the best balance between model
size and accuracy. We experimented with us-
ing between 20 to 500 transformations. Using
fewer than 80 transformations resulted in subop-
timal performance on all datasets. However, in-
creasing the number of transformations above 100
only provided diminishing returns at the cost of a
larger number of parameters.

The transformations are specified via a set of
matrices T = [Tu; Tv] ∈ Rt×n×2n, and the corre-
sponding biases B ∈ Rt×n, where n is the length
of the word representation. We use Eq. 2 to obtain
H ∈ Rt×n, where g = ReLU (Hahnloser et al.,
2000).

H = g(T[u;v] +B) (2)

The next step is to combine the information in H
into a single output representation p, by weighting
in the individual contribution of each of the trans-
formations.

3.2 Weighting
We experimented with four different ways of com-
bining the t rows of H into p. A first variation,
TransWeight-feat, uses a weight vector wfeat ∈
Rn and a bias vector bfeat ∈ Rn to weight
the individual features of each of the t trans-
formed vectors. The weighted vectors are then

summed. Each component of p is obtained via

pc = wfeat
c

[
t∑
i=1

Hi,c

]
+ bfeatc .

Another weighting variation, TransWeight-
trans, uses a weight vector wtrans ∈ Rt and a bias
btrans ∈ Rn to weight the t transformed vectors.
Each pc is a weighted sum of the corresponding

column of H, pc =
[

t∑
i=1

Hi,cw
trans
i

]
+ btransc .

A third variation, TransWeight-mat, weights the
elements of H using a matrix Wmat ∈ Rt×n and
the bias bmat ∈ Rn. The result of the Hadamard
product Wmat �H is summed column-wise, re-
sulting in a vector whose components are given by

pc =

[
t∑
i=1

(Wmat �H)i,c

]
+ bmatc .

Although distinct, the three weighting proce-
dures have a common bias: they perform a local
weighting of the t rows of H. The local weighting
means that the c-th component of the final com-
posed representation, pc, is based only on the val-
ues in the c-th column of H, and does not integrate
information from the other n− 1 columns. As the
results in Table 3 will show, local weightings are
unable to tap into the additional information in H.

In transformation weighting, TransWeight, we
use a global weighting tensor W ∈ Rt×n×n and a
bias b ∈ Rn to combine the elements of H. The
weighting is performed using a tensor double con-
traction (:), as shown in Eq. 3.

p = W : H+ b (3)

In this formulation the c-th component of
the final representation is obtained as pc =
n∑
i=1

t∑
j=1

Wc,i,jHj,i. The double dot product op-

eration results in a global weighting because the
entire matrix of transformations H is taken into
account for each component of p, albeit using a
component-specific weighting.

TransWeight addresses the shortcomings of ex-
isting composition models identified in Section 2.
Because the transformation matrices are not word-
specific, the number of necessary parameters is
drastically reduced. Moreover, learning to reuse
transformations for words with similar vector rep-
resentations is an integral part of training the
model. This makes TransWeight particularly adept
for creating composed representations of phrases
that contain new words. As long as the new words
are similar to some of the words seen during train-
ing, the model can reuse the learned transforma-

tions for building new phrasal representations.

3.3 Why is the non-linearity necessary for
transformation weighting?

As mentioned earlier, the models described in Sec-
tion 2 do not benefit from the addition of non-
linear activations. This poses the question why
a non-linearity is necessary in the transformation
weighting model. When the non-linearity and
biases are omitted, the transformation weighting
model is:

p = W : (T[u;v])

pc =
n∑
i=1

t∑
j=1

[
Wc,i,j (T[u;v])j,i

]
n∑
i=1

t∑
j=1

[
Wc,i,j

(
2n∑
k=1

Tj,i,k[u;v]k

)]
(4)

Wc,∗,∗ is a matrix of component-specific weight-
ings of the transformed representations T[u;v].
We replace T by a component-specific transfor-
mation tensor Tc = Wc,∗,∗ �T:

pc =

n∑
i=1

t∑
j=1

2n∑
k=1

Tc
j,i,k[u;v]k

=
n∑
i=1

t∑
j=1

Tc
j,i · [u;v] (5)

If tc =
∑

i

∑
j T

c
j,i, then it follows from the dis-

tributive property of the dot product that pc =
tc · [u;v]. Without a non-linearity, the transforma-
tion weighting model thus reduces to the Matrix
model. This does not hold for the transformation
with the non-linearity — since αg(a) 6= g(αa)
for a non-linearity g, we cannot precompute a
component-specific transformation matrix Tc.

4 Training and evaluating composition
models

We evaluated the composition models described
in this paper on three phrase types: com-
pounds; adjective-noun phrases; and adverb-
adjective phrases for three languages: English;
German; and Dutch. As discussed in Section 1,
our goal is to train and evaluate composition func-
tions of the form p = f(u,v), such that the cosine
similarity between the predicted representation p
and the target representation p̃ is maximized. In
order to do so, we need a target representation p̃

for each phrase as well as the representations of
their constituent words, u and v.

In Section 4.1, we describe the treebanks that
were used to train the word and phrase representa-
tions u, v, and p̃. Section 4.2 describes how the
phrase sets were obtained for each language. In
Section 4.3, we describe how the word/phrase rep-
resentations and composition models were trained.
Finally, in Section 4.4, we describe our evaluation
methodology.

4.1 Treebank
English The distributional representations for
words and phrases for English were trained on the
ENCOW16AX treebank (Schäfer and Bildhauer,
2012; Schäfer, 2015). ENCOW16AX contains
crawled web data from a wide variety of sources.
We extract sentences from documents with a doc-
ument quality estimation of a or b to obtain a large
number of relatively clean sentences. The ex-
tracted subset contains 89.0M sentences and 2.2B
tokens. In contrast to Dutch and German, we train
the word representations on word forms, due to the
large number of words that were assigned an un-
known lemma.

German We use three sections of the TüBa-
D/DP treebank (de Kok and Pütz, 2019) to train
lemma and phrase representations for German: (1)
articles from the German newspaper taz from 1986
to 2009; (2) the German Wikipedia dump of Jan-
uary 20, 2018; and (3) the German proceedings
from the EuroParl corpus (Koehn, 2005; Tiede-
mann, 2012). Together, these sections contain
64.9M sentences and 1.3B tokens.

Dutch Lemma and phrase representations for
Dutch were trained on the Lassy Large treebank
(Van Noord et al., 2013). The Lassy Large tree-
bank consists of various genres of written text,
such as newspapers, Wikipedia, and text from the
medical domain. The Lassy Large treebank con-
sists of 47.6M sentences and 700M tokens.

4.2 Phrase sets
We extracted the compound sets from existing
lexical resources that are available for English,
German, and Dutch. The adjective-noun and
adverb-adjective phrases were automatically ex-
tracted from the treebanks using part-of-speech
and dependency annotations. Each phrase set con-
sists of phrases and their constituents. For exam-
ple, the German compound set contains the com-

pound Apfelbaum ‘apple tree’ together with its
constituent words Apfel ‘apple‘ and Baum ‘tree’.
We filter out phrases where either the words or
the phrase do not make the frequency threshold of
word2vec training (Section 4.3). The phrase set
sizes are shown in Table 2. Each phrase set was
was divided into train, test and dev splits
with the ratio 7:2:1.

Language Phrase Type Phrases w1 w2 w1 & w2
German Adj-Noun 119,434 7,494 16,557 24,031

Compounds 32,246 5,661 4,899 8,079
Adv-Adj 23,488 1,785 5,123 5,905

English Adj-Noun 238,975 8,210 13,045 20,644
Compounds 16,978 3,689 3,476 5,408
Adv-Adj 23,148 820 3,086 3,817

Dutch Adj-Noun 83,392 4,999 10,936 15,744
Compounds 17,773 3,604 3,495 5,317
Adv-Adj 4,540 476 1,050 1,335

Table 2: Overview of the composition datasets
evaluated in this paper. Reports the total number
of phrases (Phrases), the number of unique words
in the first (w1) and second (w2) position, as well
as the number of unique words in either position
(w1 & w2) for each language, phrase type pair.

Compounds For German, we use the data set
introduced by Dima (2015), which was extracted
from the German wordnet GermaNet (Hamp and
Feldweg, 1997; Henrich and Hinrichs, 2011).
Dutch noun-noun compounds were extracted from
the Celex lexicon (Baayen et al., 1993). The
English compounds come from the (Tratz, 2011)
dataset and from the English WordNet (Fellbaum,
1998) (the data.noun entries with two con-
stituents separated by dash or underscore).

Adjective-noun phrases The adjective-noun
phrases were extracted automatically from the
treebanks based on the provided part-of-speech
annotations. We treat every occurrence of an at-
tributive adjective followed by a noun as a single
unit. The adjectives and nouns that are part of such
phrases are therefore absorbed by this unit. The
representations of adjectives and nouns are as a
consequence based only on the remaining occur-
rences (e.g. adjectives in predicative positions and
nouns not preceded by adjectives).

Adverb-adjective phrases For the adverb-
adjective data sets, we extracted every head-
dependent pair where: (1) head is an attributive
or predicative adjective; and (2) head governs
dependent with the adverb relation. We did not

impose any requirements with regards to the part
of speech of dependent in order to extract both real
adverbs (eg. Dutch: zeer giftig ‘very poisonous’)
and adjectives which function as an adverb (eg.
Dutch: buitensporig groot ‘exceptionally large’).

To be able to learn phrase representations in
word2vec’s training regime (Section 4.3), we ad-
ditionally require that the dependent immediately
precedes the head. Similarly to adjective-noun
phrases, the representations of adverbs and adjec-
tives are consequently based on the remaining oc-
currences.

4.3 Training
For each phrase type, each target representation
p̃ was trained jointly with the representations of
the constituent words u and v using word2vec
(Mikolov et al., 2013) and the hyperparameters in
Appendix A. For phrases where words are sepa-
rated by a space (adjective-noun phrases, adverb-
adjective phrases, and English compounds), we
first merged the phrase into a single unit. This ac-
commodates training using word2vec, which uses
tokens as its basic unit.

Each composition model p = f(u,v) (with
exception of the unscaled additive model) was
trained using backpropagation with the Adagrad
algorithm (Duchi et al., 2011). Since our goal
is to maximize the cosine similarity between the
predicted phrase representation p and the target
representation p̃, we used the cosine distance,
1 − p·p̃

‖p‖2‖p̃‖2 , as the loss function. The training
hyperparameters are summarized in Appendix B.

4.4 Evaluation methodology
Baroni and Zamparelli (2010) introduced the idea
of using a rank evaluation to assess the perfor-
mance of different composition models. Fig. 1 il-
lustrates the process of evaluating two composed
representations, p1 and p2, of the compound ap-
ple tree, produced by two distinct composition
functions, f1 and f2. In the simplified setup of
Fig. 1, the original vectors, depicted using solid
blue arrows, are v, the vector of tree and p̃, the
vector of apple tree. p1 and p2, the representa-
tions composed using f1 and f2, are depicted us-
ing dashed orange arrows.
p1’s evaluation proceeds as follows: first, p1

is compared, in terms of cosine similarity, to the
original representations of all words and com-
pounds in the dictionary. The original vectors are
then sorted such that the most similar vectors are

first. In Fig. 1, v, the vector of tree, is closer to p1

than p̃, the original vector of apple tree. The rank
assigned to a composed representation is the po-
sition of the corresponding original vector in the
similarity-sorted list. In p1’s case, the rank is 2
because the original representation of apple tree,
p̃, was second in the ordering.

p̃

apple treev

tree

p1

apple tree (rank 2)

p2

apple tree (rank 1)

Figure 1: Corrected evaluation: the original rep-
resentation p̃ of the compound apple tree is the
vector of reference; both original (v) and com-
posed (p1,p2) representations are compared to p̃
in terms of cosine similarity.

The same procedure is then performed for p2.
p2 is compared to the original vectors p̃ and v and
assigned the rank 1, because p̃, the original vector
for apple tree, is its nearest neighbor.

Herein lies the problem: although p1 is closer
to the original representation p̃ than p2, p1’s rank
is worse. This is because the vector of reference is
the composed representation, which changes from
one composition function to the other. Baroni and
Zamparelli (2010)’s formulation of the rank as-
signment procedure can lead to situations where
composed representations rank better even as the
distance between the composed and the original
vector increases, as illustrated in Fig. 1.

We propose a simple fix for this issue: we com-
pute all the cosine similarities with respect to p̃,
the original representation of each compound or
phrase. Having a fixed reference point makes it
possible to correctly assess and compare the per-
formance of different composition models. In the
new formulation p1 is correctly judged to be the
better composed representation, assigned rank 1,
whereas p2 is assigned rank 2.

Composition models are evaluated on the test
split of each dataset. First, the rank of each com-
posed representation is determined using the pro-
cedure described above. Then the ranks of all the

test set entries are sorted. We report the first
(Q1), second (Q2) and third (Q3) quartile, where
Q2 is the median of the sorted rank list, Q1 is
the median of the first half and Q3 is the me-
dian of the second half of the list. We report two
additional performance metrics: the average co-
sine distance (cos-d) between the composed and
the original representations of each test set en-
try and the percentage of test compounds with
rank ≤5. Typically, a composed representation
can have close neighbors that are different but se-
mantically similar to the composed phrase. A rank
≤5 indicates a well-build representation, compati-
ble with the neighborhood of the original phrase.

Another particularity of our evaluation is that
the ranks are computed against the full vocabulary
of each embedding set. This is in contrast to pre-
vious evaluations (Baroni and Zamparelli, 2010;
Dima, 2015) where the rank was computed against
a restricted dictionary containing only the words
and phrases in the dataset. A restricted dictio-
nary makes the evaluation easier since many simi-
lar words are excluded. In our case similar words
from the entire original vector space can become
foils for the composition model, even if they are
not part of the dataset. For example the English
compounds dataset has a restricted vocabulary of
25,807 words, whereas the full vocabulary con-
tains 270,941 words.

5 Results

Section 5.1 reports on the performance of the dif-
ferent weighting variants proposed for the trans-
formation weighting model on the most challeng-
ing of the nine datasets, the German compounds
dataset. TransWeight with the best performing
weighting is then compared to existing composi-
tion models in Section 5.2.

5.1 Performance of different weighting
variants

Table 3 compares the performance of the four
weighting variants introduced in Section 3.2.

TransWeight-feat, which sums the transformed
representations and then weights each component
of the summed representation, has the weakest
performance, with only 50.82% of the test com-
pounds receiving a rank that is lower than 5.

A better performance – 52.90% – is obtained
by applying the same weighting for each col-
umn of the transformations matrix H. The re-

sults of TransWeight-trans are interesting in two
respects: first, it outperforms the feature variation,
TransWeight-feat, despite training a smaller num-
ber of parameters (300 vs. 400 in our setup). Sec-
ond, it performs on par with the TransWeight-mat
variation, although the latter has a larger number
of parameters (20,200 in our setup). This suggests
that an effective combination method needs to take
into account full transformations, i.e. entire rows
of H and combine them in a systematic way.

TransWeight builds on this insight by making
each element of the final composed representa-
tion p dependent on each component of the trans-
formed representation H. The result is a notewor-
thy increase in the quality of the predictions, with
∼12% more of the test representations having a
rank ≤5.

Model W param Cos-d Q1 Q2 Q3 ≤5
TransWeight-feat n+ n 0.344 2 5 28 50.82%
TransWeight-trans t+ n 0.338 2 5 24 52.90%
TransWeight-mat tn+ n 0.338 2 5 25 53.24%
TransWeight tn2 + n 0.310 1 3 11 65.21%

Table 3: Different weighting variations evaluated
on the compounds dataset (32,246 nominal com-
pounds). All variations use t = 100 transforma-
tions, word representations with n = 200 dimen-
sions and the dropout rate that was observed to
work best on the dev dataset (see Appendix B for
details). Results on the 6442 compounds in the
test set of the German compounds dataset.

Although this weighting does use significantly
more parameters than the previous weightings
(4,000,200 parameters), the number of parameters
is relative to the number of transformations t and
does not grow with the size of the vocabulary. As
the results in the next subsection show, a relatively
small number of transformations is sufficient even
for larger training vocabularies.

5.2 Comparison to existing composition
models

The composition models discussed so far were
evaluated on the nine datasets introduced in Sec-
tion 4.1. The results using the corrected rank eval-
uation procedure described in Section 4.4 are pre-
sented in Table 4.4

4 Table 5 of the appendix presents for completion the re-
sults using the Baroni and Zamparelli (2010) rank evaluation
for the four best performing models. Using the composed
representation as a reference point leads to an unfair evalua-
tion of composition models and should be avoided.

TransWeight, the composition model proposed
in this paper, delivers consistent results, being the
best performing model across all languages and
phrase types. The difference in performance to the
runner-up model, FullLex+, translates into more
of the test phrases being close to the original rep-
resentations, i.e. achieving a rank ≤ 5. This
difference ranges from 8% of the test phrases in
the German compounds dataset to less than 1%
for English adjective-noun phrases. However, it is
important to note the substantial difference in the
number of parameters used by the two models: all
TransWeight models use 100 transformations and
have, therefore, a constant number of 12,020,200
parameters. In contrast the number of parame-
ters used by FullLex+ increases with the size of
the training vocabulary, reaching 739,320,200 pa-
rameters in the case of the English adjective-noun
dataset.

The most difficult task for all the composition
models in any of the three languages is compound
composition. We believe this difficulty can be
mainly attributed to the complexity introduced by
the position. For example in adjective-noun com-
position, the adjective always takes the first posi-
tion, and the noun the second. However, in com-
pounds the same noun can occur in both positions
throughout different training examples. Consider
for example the compounds boat house and house
boat. In boat house – a house to store boats – the
meaning of house is shifted towards shelter for an
inanimate object, whereas house boat selects from
house aspects related to human beings and their
daily lives happening on the boat. These position-
related differences can make it more challenging
to create composed representations.

Another aspect that makes the adverb-
adjective and adjective-noun datasets easier
is the high dataset frequency of some of the
adverbs/adjectives. For example, in the English
adjective-noun dataset a small subset of 52
adjectives like new, good, small, public, etc. are
extremely frequent, occurring more than 500
times in the training portion of the adjective-noun
sample dataset. Because the adjective is always
the first element of the composition, the phrases
that include these frequent adjectives amount to
around 24.8% of the test dataset. Frequent con-
stituents are more likely to be modeled correctly
by composition – thus leading to better results.

The additive models (Addition, SAddition,

Nominal Compounds Adjective-Noun Phrases Adverb-Adjective Phrases
Model Cos-d Q1 Q2 Q3 ≤5 Cos-d Q1 Q2 Q3 ≤5 Cos-d Q1 Q2 Q3 ≤5

English
Addition 0.408 2 7 38 46.14% 0.431 2 7 32 44.25% 0.447 2 5 15 53.01%
SAddition 0.408 2 7 38 46.14% 0.421 2 5 26 50.95% 0.420 1 3 8 67.76%
VAddition 0.403 2 6 33 47.95% 0.415 2 5 22 53.30% 0.410 1 2 6 71.94%
Matrix 0.354 1 2 9 67.37% 0.365 1 2 6 74.38% 0.343 1 1 2 91.17%
WMask+ 0.344 1 2 7 71.53% 0.342 1 1 3 82.67% 0.335 1 1 2 93.27%
BiLinear 0.335 1 2 6 73.63% 0.332 1 1 3 85.32% 0.331 1 1 1 93.59%
FullLex+ 0.338 1 2 7 72.82% 0.309 1 1 2 90.74% 0.327 1 1 1 94.28%
TransWeight 0.323 1 1 4.5 77.31% 0.307 1 1 2 91.39% 0.311 1 1 1 95.78%

German
Addition 0.439 9 48 363 17.49% 0.428 4 13 71 32.95% 0.500 4 19 215.5 29.87%
SAddition 0.438 9 46 347 18.02% 0.414 2 8 53 42.80% 0.473 2 7 99.5 45.44%
VAddition 0.430 8 39 273 19.02% 0.408 2 7 43 45.14% 0.461 2 5 52 51.12%
Matrix 0.363 3 8 45 41.88% 0.355 1 2 8 68.67% 0.398 1 1 5 76.41%
WMask+ 0.340 2 5 25 52.05% 0.332 1 2 5 77.68% 0.387 1 1 3 80.94%
BiLinear 0.339 2 5 26 53.46% 0.322 1 1 3 81.84% 0.383 1 1 3 83.02%
FullLex+ 0.329 2 4 20 56.83% 0.306 1 1 2 86.29% 0.383 1 1 3 83.13%
TransWeight 0.310 1 3 11 65.21% 0.297 1 1 2 89.28% 0.367 1 1 2 87.17%

Dutch
Addition 0.477 5 27 223.5 27.74% 0.476 3 13 87 35.63% 0.532 3 9 75 38.04%
SAddition 0.477 5 27 221 27.71% 0.462 2 7 65 44.95% 0.503 2 4 34 55.57%
VAddition 0.470 4 22 177 29.09% 0.454 2 6 47 48.13% 0.486 1 3 14 63.18%
Matrix 0.411 2 5 26 52.19% 0.394 1 2 6 74.92% 0.445 1 1 4 78.39%
WMask+ 0.378 1 3 15 60.14% 0.378 1 1 4 80.78% 0.429 1 1 2 83.02%
BiLinear 0.375 1 3 19 59.23% 0.375 1 1 3 81.50% 0.426 1 1 2 83.57%
FullLex+ 0.388 1 3 14 60.84% 0.362 1 1 2 85.24% 0.433 1 1 3 82.36%
TransWeight 0.376 1 2 11 66.61% 0.349 1 1 2 88.55% 0.423 1 1 2 84.01%

Table 4: Results for English, German and Dutch on the composition of nominal compounds, adjective-
noun phrases and adverb-adjective phrases.

VAddition) are the least competitive models in our
evaluation, on all datasets. The results strongly
argue for the point that additive models are too
limited for composition. An adequate composed
representation cannot be obtained simply as an
(weighted) average of the input components.

The Matrix model clearly outperforms the ad-
ditive models. However, its results are modest
in comparison to models like WMask+, BiLin-
ear, FullLex+ and TransWeight. This is to be ex-
pected: having a single affine transformation lim-
its the model’s capacity to adapt to all the possi-
ble input vectors u and v. Because of its small
number of parameters, the Matrix model can only
capture the general trends in the data.

More interaction between u and v is promoted
by the BiLinear model through the d bilinear
forms in the tensor E ∈ Rn×d×n. This capacity
to absorb more information from the training data
translates into better results — the BiLinear model
outperforms the Matrix model on all datasets.

In evaluating FullLex we tried to mitigate its
treatment of unknown words. Instead of using un-

known matrices to model composition of phrases
not in the training data, we take a nearest neigh-
bor approach to composition. Take for example
the phrase sky-blue dress, where sky-blue does not
occur in train. Our implementation, FullLex+,
looks for the nearest neighbor of sky-blue that ap-
pears in train, blue and uses the matrix associ-
ated with it for building the composed represen-
tation. The same approach is also used for the
WMask model, which is referred to as WMask+.

The use of datasets with a range of different
sizes revealed that datasets with a smaller num-
ber of phrases per unique word can be success-
fully modelled using only transformation vectors.
However, datasets with a larger number of phrases
per word require the use of transformation matri-
ces in order to generalize. For example, the Dutch
compounds dataset has 5,317 unique words and
17,773 phrases, resulting in 3.3 phrases per word.
On this dataset WMask+ fares only slightly worse
than FullLex+ (0.70%), an indication that Full-
Lex+ suffers from data sparsity in such scenarios
and cannot produce good results without an ade-

quate amount of training data. By contrast, the gap
between the two models increases considerably on
datasets with more phrases per word — e.g. Full-
Lex+ outperforms WMask+ with 8.07% on the
English adjective-noun phrase dataset, which has
11.6 phrases per word.5

We compared FullLex+ and TransWeight in
terms of their ability to model phrases where at
least one of the constituents is not part of the train-
ing data. For example 16.2% of the test portion of
the English compounds dataset, 563 compounds,
have at least one constituent that is not seen during
training. We evaluated FullLex+ and TransWeight
on this subset of data: 59.15% of the representa-
tions composed using FullLex+ obtain a rank≤ 5.
When using TransWeight, a rank ≤ 5 is obtained
for 67.50% of the representations. The difference
between the two results is an indicator of the su-
perior generalization capabilities of TransWeight.

TransWeight is the top performing composition
model on small and large datasets alike. This
shows that treating similar words similarly — and
not each word as a semantic island — has a two-
fold benefit: (i) it leads to good generalization ca-
pabilities when the training data is scarce and (ii)
gives the model the possibility to accommodate
a large number of training examples without in-
creasing the number of parameters.

5.3 Understanding TransWeight

The results in Section 5.2 have shown that the
transformations-based generalization strategy em-
ployed by TransWeight works well across differ-
ent languages and phrase types. However, under-
standing what the transformations encode requires
taking a step back and contemplating again the ar-
chitecture of the model.

Each transformation used by the model can be
seen as a separate application of an affine transfor-
mation of the concatenated input vectors [u;v] ∈
R2n – essentially, one Matrix model – resulting in
a vector in Rn. 100 transformations provide 100
ways of combining the same pair of input vectors.

Two competing hypotheses can be put forth
about the way each transformation contributes to
the final representation. The specialization hy-
pothesis assumes that each transformation special-
izes on particular input types e.g. bigrams made of
color adjectives and artifact-like nouns like black

5The number of unique words and phrases for each dataset
is available in Table 2.

car. In contrast, the distribution hypothesis as-
sumes that the parameters responsible for partic-
ular bigrams are distributed across the transforma-
tions space instead of being confined to any single
transformation.

If the specialization hypothesis holds, removing
the transformations that are tailored to a particu-
lar input type will drastically reduce the perfor-
mance on instances of that input type. In order
to test this hypothesis, we evaluated TransWeight
while randomly dropping full transformations at
dropout rates between 0% and 90% during predic-
tion.6 This procedure also removes between 0%
and 90% of the specialized transformations — as-
suming that they exist.

The performance of the model with transforma-
tion dropout is hard to interpret in isolation, since
it is to be expected that the performance of a model
decreases as side-effect of removing parameters.
Thus, any loss of performance can be attributed to
the removal of specific transformations or to the
reduction of the number of parameters in general.
In order to make the results interpretable, we have
created a reference model that drops individual pa-
rameters of the transformed representations, rather
than dropping full transformations. The reference
model removes the same number of parameters as
the model with transformation dropout, but keeps
specific transformations partially intact. This al-
lows us to verify whether the loss of performance
of dropping out transformations is larger than the
expected loss of removing (any) parameters. If
this is indeed the case, removing certain trans-
formations is more harmful than removing ran-
dom parameters and the specialization hypothesis
should be accepted. On the other hand, if there
is no tangible difference between the two mod-
els, then the specialization hypothesis should be
rejected in favor of the distribution hypothesis.

The results of this experiment on the English
adjective-noun set are shown in Figure 2, which
plots the percentage of ranks ≤ 5 against the
dropout rate. Since there is virtually no difference
in losses between the model that uses transforma-
tion dropout and the reference model, we reject
the specialization hypothesis. However, reject-
ing the specialization hypothesis does not exclude
the possibility that semantic properties of specific
classes of words are captured by parameters dis-
tributed across the transformations.

6The training hyperparameters are unchanged.

0.0 0.2 0.4 0.6 0.8 0.9
amount of dropout

60

65

70

75

80

85

90

pe
rc

en
ta

ge
 o

f
ra

nk
s

5

Per elem. dropout
Per transf. dropout

Figure 2: The percentage of ranks ≤ 5 of the
model that drops transformations randomly and
the refence model that drops individual parameters
of transformed representations randomly.

6 Conclusion

In this paper we have introduced TransWeight,
a new composition model which uses a set of
weighted transformations, as a middle ground be-
tween a fully lexicalized model and models based
on a single transformation. TransWeight outper-
forms all other models in our experiments.

In this work, we have trained TransWeight for
specific phrase types. In the future, we would like
to investigate whether a single TransWeight model
can be used to perform composition of different
phrase types, possibly while integrating informa-
tion about the structure of the phrases and their
context as in Hermann and Blunsom (2013); Yu
et al. (2014); Yu and Dredze (2015).

Another extension that we are interested in is
to use TransWeight to compose more than two
words. We plan to follow the lead of Socher et al.
(2012) here, which uses the FullLex composition
function in a recursive neural network to compose
an arbitrary number of words. Similarly, we could
use TransWeight in a recursive neural network in
order to compose more than two words.

In our experiments, 100 transformations yielded
optimal results for all phrase sets. However, fur-
ther investigation is needed to determine if this
number is optimal for any combination of word
classes, or whether it is dependent on the word
class type (i.e. open or closed), the diversity of
the word classes in a dataset, or properties of the
embedding space that are inherent to the method
used to construct the vector space.

Acknowledgements

We would like to thank our reviewers and in par-
ticular our action editor, Sebastian Padó, for their
constructive comments. We also want to thank
the other members A3 project team for all their
comments and suggestions during project meet-
ings. Financial support for the research reported
in this paper was provided by the German Re-
search Foundation (DFG) as part of the Collabora-
tive Research Center “The Construction of Mean-
ing” (SFB 833), project A3.

References

Martín Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software
available from tensorflow.org.

Harald Baayen, Richard Piepenbrock, and Hed-
derik van Rijn. 1993. The CELEX lexical data
base on CD-ROM.

Marco Baroni and Roberto Zamparelli. 2010.
Nouns are vectors, adjectives are matrices: Rep-
resenting adjective-noun constructions in se-
mantic space. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 1183–1193. Associa-
tion for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vin-
cent, and Christian Janvin. 2003. A Neural
Probabilistic Language Model. The Journal of
Machine Learning Research, 3:1137–1155.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and Pavel

http://tensorflow.org/
http://tensorflow.org/

Kuksa. 2011. Natural Language Processing (al-
most) from Scratch. The Journal of Machine
Learning Research, 12:2493–2537.

Corina Dima. 2015. Reverse-engineering Lan-
guage: A Study on the Semantic Composition-
ality of German Compounds. In Proceedings
of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1637–
1642.

Georgiana Dinu, The Pham Nghia, and Marco Ba-
roni. 2013. General estimation and evaluation
of compositional distributional semantic mod-
els. In Workshop on Continuous Vector Space
Models and their Compositionality, Sofia, Bul-
garia.

John Donne. 1624. Devotions upon Emergent Oc-
casions. Kingdom of England.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal
of Machine Learning Research, 12(Jul):2121–
2159.

Christiane Fellbaum. 1998. WordNet. Wiley On-
line Library.

Richard H. R. Hahnloser, Rahul Sarpeshkar,
Misha A. Mahowald, Rodney J. Douglas, and
Sebastian H. Seung. 2000. Digital selection
and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature, 405(6789):947.

Birgit Hamp and Helmut Feldweg. 1997. Ger-
maNet - a Lexical-Semantic Net for German. In
Proceedings of ACL workshop Automatic Infor-
mation Extraction and Building of Lexical Se-
mantic Resources for NLP Applications, pages
9–15.

Verena Henrich and Erhard W. Hinrichs. 2011.
Determining Immediate Constituents of Com-
pounds in GermaNet. In Proceedings of Re-
cent Advances in Natural Language Process-
ing (RANLP 2011), pages 420–426, Hissar, Bul-
garia.

Karl Moritz Hermann and Phil Blunsom. 2013.
The Role of Syntax in Vector Space Models of
Compositional Semantics. In Proceedings of
the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 894–904.

Philipp Koehn. 2005. Europarl: A Parallel Cor-
pus for Statistical Machine Translation. In MT
summit, volume 5, pages 79–86.

Daniël de Kok and Sebastian Pütz. 2019. Style-
book for the Tübingen treebank of dependency-
parsed German (TüBa-D/DP). Seminar
fur Sprachwissenschaft, Universität Tübingen,
Tübingen, Germany.

Angeliki Lazaridou, Marco Marelli, Roberto
Zamparelli, and Marco Baroni. 2013.
Compositional-ly Derived Representations
of Morphologically Complex Words in Dis-
tributional Semantics. In Proceedings of the
51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013), pages
1517–1526, Sofia, Bulgaria.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Distributed
Representations of Words and Phrases and their
Compositionality. In Advances in Neural Infor-
mation Processing Systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Com-
position in Distributional Models of Semantics.
Cognitive Science, 34(8):1388–1429.

Sebastian Padó, Aurélie Herbelot, Max Kisse-
lew, and Jan Šnajder. 2016. Predictability of
Distributional Semantics in Derivational Word
Formation. In Proceedings of COLING 2016,
the 26th International Conference on Computa-
tional Linguistics, pages 1285–1296.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vec-
tors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 1532–
1543, Doha, Qatar.

Roland Schäfer. 2015. Processing and querying
large web corpora with the COW14 architec-
ture. In Proceedings of Challenges in the Man-
agement of Large Corpora 3 (CMLC-3), Lan-
caster. UCREL, IDS.

Roland Schäfer and Felix Bildhauer. 2012. Build-
ing Large Corpora from the Web Using a New
Efficient Tool Chain. In Proceedings of the
Eight International Conference on Language
Resources and Evaluation (LREC’12), pages

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://rolandschaefer.net/?p=749
http://rolandschaefer.net/?p=749
http://rolandschaefer.net/?p=749
http://rolandschaefer.net/?p=70
http://rolandschaefer.net/?p=70
http://rolandschaefer.net/?p=70

486–493, Istanbul, Turkey. European Language
Resources Association (ELRA).

Richard Socher, Danqi Chen, Christopher D. Man-
ning, and Andrew Y. Ng. 2013a. Reasoning
with Neural Tensor Networks for Knowledge
Base Completion. In Advances in Neural In-
formation Processing Systems, pages 926–934.

Richard Socher, Brody Huval, Christopher D.
Manning, and Andrew Y. Ng. 2012. Seman-
tic Compositionality through Recursive Matrix-
Vector Spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natu-
ral Language Learning, pages 1201–1211. As-
sociation for Computational Linguistics.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning Continuous Phrase
Representations and Syntactic Parsing with Re-
cursive Neural Networks. In Proceedings of the
NIPS-2010 Deep Learning and Unsupervised
Feature Learning Workshop, pages 1–9.

Richard Socher, Alex Perelygin, Jean Y. Wu,
Jason Chuang, Christopher D. Manning, An-
drew Y. Ng, and Christopher Potts. 2013b. Re-
cursive Deep Models for Semantic Composi-
tionality over a Sentiment Treebank. In Pro-
ceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing,
pages 1631–1642.

Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple
Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research,
15(1):1929–1958.

Jörg Tiedemann. 2012. Parallel Data, Tools and
Interfaces in OPUS. In Proceedings of the
8th International Conference on Language Re-
sources and Evaluation (LREC’12), Istanbul,
Turkey. European Language Resources Associ-
ation (ELRA).

Stephen Tratz. 2011. Semantically-enriched
Parsing for Natural Language Understanding.
Ph.D. thesis, PhD Thesis, University of South-
ern California.

Gertjan Van Noord, Gosse Bouma, Frank
Van Eynde, Daniël De Kok, Jelmer Van der

Linde, Ineke Schuurman, Erik Tjong Kim Sang,
and Vincent Vandeghinste. 2013. Large Scale
Syntactic Annotation of Written Dutch: Lassy.
In Essential Speech and Language Technology
for Dutch, pages 147–164. Springer.

Mo Yu and Mark Dredze. 2015. Learning Compo-
sition Models for Phrase Embeddings. Transac-
tions of the Association for Computational Lin-
guistics, 3:227–242.

Mo Yu, Matthew Gormley, and Mark Dredze.
2014. Factor-based Compositional Embedding
Models. In NIPS Workshop on Learning Se-
mantics, pages 95–101.

Nominal Compounds Adjective-Noun Phrases Adverb-Adjective Phrases
Model Cos-d Q1 Q2 Q3 ≤5 Cos-d Q1 Q2 Q3 ≤5 Cos-d Q1 Q2 Q3 ≤5

English
WMask+ 0.344 3 9 43 39.84% 0.342 4 11 41 33.23% 0.335 3 8 33 40.86%
BiLinear 0.335 3 7 33 43.81% 0.332 3 9 33 39.14% 0.331 2 7 25 45.84%
FullLex+ 0.338 3 9 41.5 40.53% 0.309 2 6 20 48.41% 0.327 2 7 25 45.45%
TransWeight 0.30 2 7 34 44.44% 0.307 3 9 33 39.36% 0.31 2 6 19 49.05%

German
WMask+ 0.34 3 12 89 37.01% 0.35 5 19 92 25.52% 0.387 8 40 219.5 18.32%
BiLinear 0.334 3 11 97 38.73% 0.34 5 15 74 29.51% 0.383 7 29 163 21.83%
FullLex+ 0.328 3 10 72 39.89% 0.343 4 12 58 32.49% 0.383 7 35 189 20.55%
TransWeight 0.31 2 10 76 40.10% 0.324 4 14 68 30.24% 0.367 6 24 130 23.21%

Dutch
WMask+ 0.393 7 39 307 21.09% 0.378 6 20 132 24.87% 0.429 9 44 315 17.42%
BiLinear 0.396 6 34 284 24.37% 0.375 5 19 140 27.40% 0.426 8 34 239 19.18%
FullLex+ 0.388 6 37 313.5 22.93% 0.362 4 13 80 31.57% 0.433 10 50 381 16.65%
TransWeight 0.376 5 28 235.5 25.25% 0.349 5 18 16 26.92% 0.423 8 29 238 18.96%

Table 5: Results using the Baroni and Zamparelli (2010) evaluation method for the best performing mod-
els for English, German and Dutch on the composition of nominal compounds, adjective-noun phrases
and adverb-adjective phrases.

A Hyperparameters word embeddings

The word embeddings were trained using the skip-
gram model with negative sampling (Mikolov
et al., 2013) from the word2vec package. Ar-
guments: embedding size of 200; symmetric win-
dow of size 10; 25 negative samples per positive
training instance; and a sample probability thresh-
old of 10−4. As a default, we use a minimum
frequency cut-off of 50. However, for German
adverb-adjective phrases and all Dutch phrases we
used a cut-off to 30 to be able to extract enough
phrases for training and evaluation.

B Hyperparameters composition models

Dropout (Srivastava et al., 2014) rates between 0
and 0.8 in 0.2 increments were tested on the dev
set for the four weighting variations presented in
Table 3, while keeping constant the number of
transformations (100). TransWeight-r performed
best with a dropout of 0.4, TransWeight-c and
TransWeight-v with 0.6 dropout and TransWeight
with 0.8 dropout. For TransWeight the dropout
is applied to H, the matrix containing the trans-
formed representations.

